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• Dirac notation for complex linear algebra 
– State vectors 
– Linear operators – matrices
– Hermitian operators 
– Unitary operators 
– Projection operators and measurement 

• Tensors 
– Basis vectors for tensor product space 
– Composite quantum systems
– Conception of tensor products as quantum entanglement 

2
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Dirac Notation for Linear Algebra 
• We previously defined the inner (dot) product of two vectors 𝑢 and 𝑣 as 

𝑢. 𝑣 = (𝑢, 𝑣),
where it was understood that 𝑢 is a row vector, which is better written as the transpose, 𝑢!.

• The bracket notation for the inner product was specialized by P.A.M Dirac, using angle 
brackets, to

𝑢. 𝑣 = 𝑢!. 𝑣 =< 𝑢| 𝑣 > = < 𝑢 𝑣 >;
• An ordinary row vector is now defined as: < 𝑢| = 𝑢" 𝑢# … 𝑢$ , where < | is the 

“bra” and an ordinary column vector is |𝑣 > =

𝑣"
𝑣#
⋮
𝑣$

, where | > is the “ket” so that the 

inner (dot) product is formed by the “bra-ket” < 𝑢|𝑣 >;
• The “bra” implicitly tells us to take the complex conjugate and the transpose of 𝑢.
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Dirac Notation for Linear Algebra 
• Having defined the notation, one can now use it to write most of ordinary vector and 

matrix algebra;

• The outer product of two vectors, which we previously wrote as 

𝑢𝑣! =

𝑢"
𝑢#
⋮
𝑢$

𝑣" 𝑣# … 𝑣$ =
𝑢"𝑣" … 𝑢"𝑣$
⋮ … ⋮

𝑢$𝑣" … 𝑢$𝑣$
Eqn. (2.1), is a matrix that can be 

written succinctly as 𝑢𝑣! = |𝑢 >< 𝑣| (we prove this later)  Eqn. (2.2);

• The outer product is often called a dyad and is a linear operator, i.e., a matrix.
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• In 3D linear algebra, we said we can write a vector 𝑣⃑ as a linear combination of the basis 
vectors 𝑒̂", 𝑒̂#, 𝑒̂%, where  𝑣", 𝑣#, 𝑣% are the scaling coefficients, thus 

-
𝑣⃑ = 𝑣"𝑒̂" + 𝑣#𝑒̂# + 𝑣%𝑒̂%
𝑣⃑ = 𝑒̂" 𝑒̂"!. 𝑣⃑ + 𝑒̂# 𝑒#!. 𝑣⃑
𝑣⃑ = 𝑒̂"𝑒̂"! + 𝑒̂#𝑒̂#! + 𝑒̂%𝑒̂%! 𝑣⃑

+ 𝑒̂% 𝑒%!. 𝑣⃑

• From the  2nd equation above we have: 𝑣" = 𝑒̂"!. 𝑣⃑ , 𝑣# = 𝑒̂#!. 𝑣⃑, 𝑣% = 𝑒%!. 𝑣⃑;

• From the 3rd equation above we have  01 = 𝑒̂"𝑒̂"! + 𝑒̂#𝑒̂#! + 𝑒̂%𝑒̂%! = ∑&'"% 𝑒̂&𝑒̂&!;

• So  ∑%&"' 𝑒%𝑒%! = /1 is the closure (completeness) relationship for a 3D vector space.
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The Dyad in 3D Vector Space



• In Hilbert space, a state vector |𝑣 > can be written as  a linear combination of the basis 
vectors |1 >, |2 >,… |𝑛 > with complex coefficients 𝑐", 𝑐#, … 𝑐$

-
|𝑣 > = 𝑐" 1 > +𝑐# 2 > +⋯+ 𝑐$|𝑛 >
|𝑣 > = |1 > < 1|𝑣 > + |2 > < 2 𝑣 > +⋯+ |𝑛 > (< 𝑛|𝑣 >
|𝑣 > = 1 >< 1 + 2 >< 2 +⋯ 𝑛 >< 𝑛 |𝑣 >

• As in ordinary vector space, the coefficients  𝑐& are “how much” of each basis vector is 
in the state vector |𝑣 >, which is given by the inner product (or the projection of the 
state vector onto each basis vector);

• The left-hand side of the last equation is equal to the right-hand side if

01 = 1 >< 1 + 2 >< 2 +⋯+ 𝑛 >< 𝑛 =8
&'"

$

|𝑖 >< 𝑖|
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Relationship of the Dyad Operator to !𝟏



• We know that the closure relationship for a basis set of vectors |𝑖 > for a vector space is
!
!

𝑖 >< 𝑖 = &1

• Any operator :𝐴 in this vector space can therefore be written as 
(𝐴 = &1 (𝐴&1 =!

!

!
"

|𝑖 >< 𝑖 (𝐴 𝑗 >< 𝑗| =!
!"

< 𝑖 (𝐴 𝑗 > |𝑖 >< 𝑗| =!
!"

𝐴!"|𝑖 >< 𝑗|

• Note that < 𝑖| (𝐴|𝑗 = 𝐴!";

• Suppose the basis set is the standard basis: |1 > =
1
0
⋮
0

, |2 > =

0
1
⋮
0

|3 > =

0
0
1
⋮

… |𝑛 > =

0
0
⋮
1

;

• It follows then that (𝐴 = ∑!"𝐴!" 𝑖 >< 𝑗 =
𝐴## 𝐴#$ …
𝐴$# 𝐴$$
⋮ ⋱

is a matrix (QED).
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Operators as Matrices



• Every quantum system has a Hamiltonian operator, !𝐻, representing the total system energy.

• Suppose the state space of the system is spanned by the basis set |𝑢! >, then
!𝐻 𝑢! >= 𝜆! 𝑢! >, with 𝜆! being the eigenvalues;

• We can therefore write

•

!𝐻 = (1!𝐻(1 = ∑! |𝑢! >< 𝑢!| !𝐻 ∑" |𝑢" >< 𝑢"|
= ∑!" 𝑢! >< 𝑢! 𝑢" > 𝜆" < 𝑢"|
= ∑!" |𝑢! > 𝛿!"𝜆" < 𝑢"|

• The last equation tells us that !𝐻 = ∑" 𝜆"|𝑢" >< 𝑢"|, which is a matrix as we saw previously.

• Hence !𝐻 =
𝜆# 0 …
0 𝜆$
⋮ ⋱

; apparently an operator is diagonal in its own eigen basis.
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Example of a Special Operator: the Hamiltonian



• Given the state vector |𝜓 > = ∑$ 𝑐$|𝜑$ >, where 𝜑$ are basis vectors, one can use the 
inner product to determine the length of the state vector state|𝜓 > , thus

< 𝜓|𝜓 > = ∑(∑$ 𝑐(∗ 𝑐$ < 𝜑(|𝜑$ >= ∑$ 𝑐$ #;

• The length of the state vector is therefore 𝜓 = < 𝜓|𝜓 >;

• For two state vectors |𝑈 > = ∑(𝑎(|𝑢( > and |𝑉 > = ∑$ 𝑏$|𝑣$ >, the inner product 
is

< 𝑈|𝑉 > = 8
(

8
$

𝑎(∗ 𝑏$ < 𝑢(|𝑣$ > = 8
$

𝑎$∗𝑏$
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Inner Product and the Length of a Vector



Linear operators
• A linear operator 0𝒪 can transform vectors (states) in the following manner

0𝒪 𝛼 𝜓 > +𝛽 𝜑 > = 𝛼 0𝒪 𝜓 > +𝛽 0𝒪 𝜑 > Eqn. (2.3);

• The expression above is simply following the ordinary rules of linear algebra (for 
addition, multiplication, and distributivity);

• Note that |𝜓 > and |𝜑 > are “state” vectors and 𝛼 and 𝛽 are complex (scalars);

• Remember that the operator 0𝒪 is simply a matrix that transforms one vector to another as 
we discussed before.
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Average (Expectation) Value 
• Given an operator 𝐴 and the state 𝜑 that is a linear combination of a set of basis vectors, 
𝑢&, we can write 

|𝜑 > =

𝑐"
𝑐#
⋮
𝑐$

⟹ |𝜑 >= 𝑐"|𝑢" > +𝑐#|𝑢# > +⋯+ 𝑐$|𝑢$ > Eqn. (2.4);

• We can compute the average (expectation) result of operating on the state as
𝐴 = 𝜑 𝐴 𝜑 = ∑&∑* 𝑐&∗𝑐* < 𝑢& 𝐴 𝑢* >;

• Define  < 𝑢& :𝐴 𝑢* >≡ 𝑎&* as a matrix element; since we must have 𝑖 = 𝑗

:𝐴 = 𝜑 𝐴 𝜑 =8
&

𝑐&∗𝑎&&𝑐* =8
&

𝑎& 𝑐& # =8
&

𝑎&𝑃& Eqn. (2.5).
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Matrix Elements
• For the state vector |𝜑 >, which we said could be written as a linear combination of 

basis vectors in a Hilbert space,
|𝜑 >= 𝑐"|𝑢" > +𝑐#|𝑢# > +⋯+ 𝑐$|𝑢$>     Eqn. (2.6),

• We can perform the operation :𝐴|𝜑 >, to get another state vector; the inner product of 
this resulting vector with another basis vector |𝑢* > is given by 

< 𝑢*| :𝐴| ∑+ 𝑐+|𝑢+ >= ∑+ < 𝑢* :𝐴 𝑢+ > 𝑐+ Eqn. (2.7);

• The expression< 𝑢* :𝐴 𝑢+ >= 𝑎*+is a number called the matrix element that expresses 
the coupling of state |𝑢+ > to state |𝑢* >; (see previous slide on expectation);

• When 𝑗 = 𝑘, then < 𝑢* :𝐴 𝑢+ >= :𝐴 is just the expectation value of the operator :𝐴.
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Hermitian Operators 
• A Hermitian conjugate of an operator 𝐴 is obtained by complex conjugating and then 

taking the transpose of the operator 
𝐴, = 𝐴∗ !;

• Some properties of Hermitian conjugates
𝐴𝐵 , = 𝐵,𝐴,

|𝜓 > , = < 𝜓|
𝐴|𝜓 > , = < 𝜓|𝐴,

𝐴𝐵|𝜓 > , = < 𝜓|𝐵,𝐴,

𝛼𝐴 , = 𝛼∗𝐴,

• An operator is Hermitian if 𝐴 = 𝐴,; this is the complex analog of the symmetric matrix;

• The eigenvalues of a Hermitian operator are always real.
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Unitary Operators 
• Recall that we defined an inverse of an operator (matrix) 𝐴 through 𝐴𝐴-" = 𝐼, where 𝐼

is the identity matrix;

• An operator 𝐴 is unitary if its adjoint (transpose) is equal to its inverse: 𝐴, = 𝐴-";

• Unitary operators are usually denoted by the symbol 𝑈;  from the definition above we 
get

𝑈𝑈, = 𝑈,𝑈 = 𝐼 Eqn. (2.8);
• An operator 𝐴 is normal if 𝐴𝐴, = 𝐴,𝐴 Eqn. (2.9);

• Hermitian and unitary operators are normal.
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Trace of an Operator 
• Given an operator 𝐴 as the matrix 𝐴 =

𝑎"" 𝑎"#
𝑎#" 𝑎## , 

we define the trace as the sum of the diagonal elements, 𝑇𝑟 𝐴 = 𝑎"" + 𝑎##;

• For a general operator 𝐴 and a basis vector set 𝑢&, we can write
𝑇𝑟 𝐴 = ∑& < 𝑢& 𝐴 𝑢& > = ∑& 𝑎&& Eqn. (2.10);

Some properties of the trace:
• Trace is cyclic, i.e., 𝑇𝑟 𝐴𝐵𝐶 = 𝑇𝑟 𝐶𝐴𝐵 = 𝑇𝑟 𝐵𝐶𝐴 ;
• Trace is independent of basis vectors, 𝑇𝑟 𝐴 = ∑& < 𝑢& 𝐴 𝑢& >= ∑& < 𝑣& 𝐴 𝑣& >;
• If operator 𝐴 has eigenvalues 𝜆& , then 𝑇𝑟 𝐴 = ∑& 𝜆& ;
• Trace is linear, meaning that 𝑇𝑟 𝛼𝐴 = 𝛼𝑇𝑟 𝐴 ; and 𝑇𝑟 𝐴 + 𝐵 = 𝑇𝑟 𝐴 + 𝑇𝑟 𝐵 ;
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Projection Operators 
• We defined earlier that the outer product of two vectors, |𝜓 > and |𝜑 > , is an operator, 
𝐴 (matrix), 

𝜓 >< 𝜑 = 𝐴 Eqn. (2.11);

• When the outer product is between a normalized vector with itself, for example, |𝜒 >
and |𝜒 >, we get a special operator called the projection operator,

𝑃 = |𝜒 >< 𝜒| Eqn. (2.12);

• The projection operator in the example above projects  any vector it operates on to the 
direction of |𝜒 >;
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Properties of Projection Operators 
• For any normalized vector, |𝑢" >, we have < 𝑢"|𝑢" >= 1 ⟹ 𝑃 = |𝑢" >< 𝑢"|;
• 𝑃, = 𝑢" >< 𝑢" = 𝑃;
• 𝑃 is Hermitian since 𝑃|𝑢" >= 𝑢" >< 𝑢" 𝑢" >= |𝑢" >;
• 𝑃# = 𝑃 since we can show that: 
• 𝑃# = 𝑃 𝑢" >< 𝑢" = 𝑢" >< 𝑢" 𝑢" >< 𝑢"| = 𝑢" >< 𝑢" = 𝑃;
• The identity 𝐼 is a projection operator: 𝐼, = 𝐼, 𝐼# = 𝐼;
• For 𝜓 >= ∑& 𝑐&𝑢& ⟹∑&𝑃& 𝜓 >= ∑& 𝑢& >< 𝑢& 𝜓 >= ∑& 𝑐&|𝑢& >= |𝜓 >;
• If 𝜆& are eigenvalues of 𝐴 with eigenvectors, |𝑎& >, then 𝐴 𝑎& >= 𝜆& 𝑎& >;we can 

therefore write the operator 𝐴 = ∑&𝐴 𝑎& >< 𝑎& = ∑& 𝜆&|𝑎& >< 𝑎&|, where we have 
used the spectral decomposition theorem discussed earlier;
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Measurement 
• Measurement is an important concept in quantum mechanics and is best understood through the 

projection operator, 𝑃;

• Assume a quantum mechanical system is initially in the state described by the vector |Ψ >;

• A measurement of the quantity 𝒜 for the system is represented by the operator 5𝐴 whose 
eigenvectors are given by 

5𝐴 𝜓% >= 𝜆% 𝜓% > Eqn. (2.13);
• After a measurement, the system is projected onto the direction of the eigenvector |𝜓% >, 

𝑃% Ψ >= 𝜓% >< 𝜓% Ψ >=< 𝜓% Ψ > |𝜓% > Eqn.( 2.14);

• The probability of the outcome of the measurement is given by < 𝜓%|Ψ > $
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• Imagine a quantum system is in state |𝜑 > = ∑! 𝑐!|𝑢! > . If a measurement of an observable 𝒪 associated  
with the system is made, what is the result of the measurement?

• An observable 𝒪 is represented by an (Hermitian) operator &𝒪; therefore, a measurement of the system 
could result in any one of the eigenvalues of the system, given by   

&𝒪 𝑢! >= 𝜆! 𝑢! >;
The question of interest is: which one? We need to compute the probability.  Since the sum of all probabilities 
of measuring any one of the eigenvalues is 1, we can write 

1 = < 𝜓 𝜓 >=< 𝜓 1 𝜓 > = < 𝜓 !
!

𝑢! >< 𝑢! 𝜓 > =!
!

< 𝜓 𝑢! >< 𝑢! 𝜓 >

• The last expression simply says that ∑! < 𝜓 𝑢! >< 𝑢! 𝜓 >= ∑! 𝑐! $ = 1;

• The probability of the measurement yielding one of the 𝜆! eigenvalues is therefore 
𝑃! = < 𝑢!|𝜓 > $ = 𝑐! $.
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Another Perspective  on Quantum Measurement



Generalization of the Gram-Schmidt Process for Hilbert space

• The Gram-Schmidt orthogonalization process for 3𝐷 space we discussed previously can 
be generalized to 𝑛𝐷 space following the same steps as before; 

• For a vector space 𝑈 spanned by the basis vectors 𝑢", 𝑢#, … 𝑢$ with a defined inner 
product, we can calculate an orthogonal basis 𝑣& by following the (algorithm) steps: 

1. |𝑣" >= |𝑢" > Eqn. (2.15);

2. |𝑣# >= 𝑢# > − ()!|+",
()!|)!,

𝑢" > Eqn. (2.16);

⋮

𝑛. 𝑣$ >= 𝑢$ > − ()!|+#,
(+!|)!,

𝑣" > − ()"|+#,
()"|)",

𝑣# > −⋯− ()#$!|+#,
()#$!|)#$!,

| 𝑣$-" > (2.17).
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Generalized Vectors and Matrices: Tensors
• We can combine two vectors 𝑢 in ℝ( and 𝑣 in ℝ$ to create another vector in the 

combined ℝ($ space by the operation of multiplication; the new vector is called a 
tensor product; 

• Supposed 𝑢 = 1
2 and 𝑣 =

3
4
5
⟹ 𝑢⨂𝑣 =

1.3
1.4
1.5
2.3
2.4
2.5

=

3
4
5
6
8
10

;

• We have produced a new vector 𝑢⨂𝑣 in 𝑈⨂𝑉 in the space ℝ#⨂ℝ%;

• NB: only the tensor (Kronecker) product is of interest to us at this time. 
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Basis Vectors for Tensor Product Space 
• Any vector in V⨂𝑈 is a weighted sum of basis vectors; 

note that 𝑉 is in ℝ( and 𝑈 is in ℝ$;

• The basis for V⨂𝑈 is the set of all vectors of the form 
𝑣&⨂𝑢* for 𝑖 = 1 to 𝑚 and 𝑗 = 1 to 𝑛;

• The basis set for V⨂𝑈 is illustrated on the figure on the 
right with 6 basis vectors;

• Observe that V⨂𝑈 is the outer product of 𝑣 and 𝑢:
𝑣⨂𝑢 = 𝑣𝑢!;

• We now learn apparently that any 𝑚×𝑛 matrix can be 
reshaped into an 𝑚𝑛×1 vector and vice versa!
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Tensors and Matrix Reshaping 

• Suppose we have the vectors 𝑣 =
1
2
3

and 𝑢 = 4
5 , we can form the tensor product 

𝑣⨂𝑢 = 𝑣𝑢! =
1
2
3

4 5 =
1.4 1.5
2.4 2.5
3.4 3.5

=
4 5
8 10
12 15

;

• We can reshape the matrix into a vector or the vector into a matrix as below 

4 5
8 10
12 15

⟺

4
5
8
10
12
15

.
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Tensors and Composite States
• Suppose we have the two basis vectors:  |0 > in 𝐻"and |1 > in 𝐻#, where 𝐻" and 𝐻#

are the respective Hilbert spaces. What is the basis for the combined Hilbert space 
𝐻 = 𝐻#⨂𝐻$?

• Using what we have learned so far, the basis for the combined Hilbert space can be 
written as all the possible products of the basis states for 𝐻" and 𝐻#, thus
|0 > ⨂ |0 > = |00 >, |0 > ⨂ |1 > = |01 >, |1 > ⨂|0 > = |10 >, |1 > ⨂|1 > = |11 >;

• In a more general example, given the state 𝜓 = 𝑎" 𝑥 > +𝑎# 𝑦 > with basis vectors 
|𝑥 > and |𝑦 > in 𝐻" and the state 𝜑 > = 𝑏" 𝑢 > +𝑏#|𝑣 > with the basis vectors |𝑢 >
and |𝑣 > in 𝐻# one can create the combined Hilbert space 𝐻"⨂𝐻# where the new state 
is described by 

|𝜒 > = 𝜓⨂𝜑 = 𝑎# 𝑥 > +𝑎$ 𝑦 > ⨂ 𝑏# 𝑢 > +𝑏$ 𝑣 >
⟹ 𝜒 >= 𝑎#𝑏# 𝑥 > ⨂ 𝑢 > +𝑎#𝑏$ 𝑥 > ⨂ 𝑣 > +𝑎$𝑏# 𝑦 > ⨂ 𝑢 > +𝑎$𝑏$ 𝑦 > ⨂𝑣 >.
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Tensors and Process-State Duality 
• We learned that 𝑣⨂𝑢 can also be a matrix, which is a mathematical process (operator) 

representing a linear transformation, but we also found that 𝑣⨂𝑢 is an abstract vector, 
which represents a state of a system;

• Evidently matrices encode processes and vectors encode states;

• We can therefore view the tensor product 𝑉⨂𝑈 as either a process or a state simply by 
reshaping the numbers as a rectangle or a list;

• By generalizing the idea of processes to higher dimensional arrays, we get tensors that 
can be constructed to create tensor networks;
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Graphical Perspective of a Tensor Product
• We previously created a tensor 𝑢⨂𝑣 out of the two vectors 𝑢 and 𝑣 as illustrated below;

• Another way to look at this process is by examining the interactions between the “nodes” that 
perform the multiplication or computation of the product; this perspective leads to the graphical 
illustration alongside the vector tensor multiplication;

• The graphical perspective is reminiscent of artificial neural network interconnections; in fact, 
this perspective illuminates a computational scheme known as “tensor flow”.
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Operators and Tensors
• Given an operator 𝐴 that acts on |𝜓 > in 𝐻" and an operator 𝐵 that acts on |𝜑 > in 𝐻#, 

we can create an operator 𝐴⨂𝐵 that acts on the vectors in the combined vector space 
𝐻"⨂𝐻#, thus

(𝐴⨂𝐵)( 𝜓 > ⨂ 𝜑 >) = 𝐴 𝜓 > ⨂𝐵 𝜑 >;
• If the two operators 𝐴 and 𝐵 are given as the matrices

𝐴 = 𝑎 𝑏
𝑐 𝑑 and 𝐵 = 𝑒 𝑓

𝑔 ℎ , we calculate the tensor product as

𝐴⨂𝐵 = 𝑎𝐵 𝑏𝐵
𝑐𝐵 𝑑𝐵 =

𝑎𝑒 𝑎𝑓 𝑏𝑒 𝑏𝑓
𝑎𝑔 𝑎ℎ 𝑏𝑔 𝑏ℎ
𝑐𝑒 𝑐𝑓 𝑑𝑒 𝑑𝑓
𝑐𝑔 𝑐ℎ 𝑑𝑔 𝑑ℎ

Eqn. (2.18).
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Describing Quantum Particle Interactions with Tensors
• Quantum particles, such as atoms, ions, electrons, and photons, can be manipulated to 

perform computing; the catch is that we must describe how these particles interact with one 
another;

• We may need to know what these particles are doing, what their status (state) is, in how 
many ways they are interacting, or what the probability of their being in certain states is; the 
state of a quantum particle can be described by a complex unit vector in 𝐂$;

• The combined state of two particles, one described by a basis vector 𝑣", in 𝐂$and the other 
by 𝑣# in 𝐂$ is a tensor product of their individual Hilbert spaces; thus 

𝐂$⊗𝐂$;
• As we discussed previously, the resulting basis vectors of the combined Hilbert space can 

be thought of as a matrix, called the density matrix, 𝜌;

• For N particles, density matrix 𝜌 is on 𝐶$⨂𝐶$⨂𝐶$…⨂𝐶$ = 𝐶$ . Eqn. (2.19).
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SVD of a Complex Matrix : Schmidt Decomposition
• When matrix 𝑀 is complex, as in quantum mechanical operators, then 𝑀 = 𝑈Λ𝑉,;

• If we write the columns of 𝑈 as 𝑢& and those of 𝑉 as 𝑣&, then 

𝑀 =
. | .
. 𝑢% .
. | .

⋱
𝜎%

⋱
− − 𝑣% −− = 𝜎#𝑢#𝑣#

& + 𝜎$𝑢$𝑣$
& +⋯+ 𝜎'𝑢'𝑣'

& Eqn. (2.20);

• Recall that 𝑢𝑣! = 𝑢⨂𝑣 = |𝑢 >< 𝑣|; because of this, (2.20) above can be written as 
(2.21) below;

• Matrix 𝑀 can be written as a state  |𝜓 > = 𝜎"𝑢"⨂𝑣" + 𝜎#𝑢#⨂𝑣# +⋯+ 𝜎.𝑢.⨂𝑣.
⟹ |𝜓 >= ∑&'". 𝜎&𝑢&⨂𝑣& Eqn. (2.21).
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SVD of a Complex Matrix and Quantum Entanglement 

• When we decompose a complex matrix 𝑀, we can write it as state vector 
|𝜓 > = ∑&'". 𝜎&𝑢&⨂𝑣& Eqn. (2.21);

• The singular values 𝜎& are renamed the Schmidt coefficients, and the rank of the matrix 
𝑀 (which is the number of non-zero singular values) 𝑟, is renamed the Schmidt rank;

• Quantum state vector |𝜓 > now  represents entanglement when the Schmidt rank 𝑟 > 1;
however, the system is not entangled when the rank is not larger than 1;

• Quantum entanglement is a resource in quantum computing and communication.
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• Reviewed complex linear algebra relevant for the quantum mechanics (used in quantum 
computing and communication applications); 
– Complex vectors
– Complex matrices

• Introduced the notion of a tensor product 
– A way to interconvert between vectors and matrices  and  vice versa
– Briefly introduced (mathematically)  the idea of entanglement 
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Summary


